
Pipelining/Overlapping Data Transfer for
Distributed Data-Intensive Job Execution

Eun-Sung Jung, Ketan Maheshwari, Rajkumar Kettimuthu
Mathematics and Computer Science Division

Argonne National Laboratory
Argonne, IL 60439

Email: {esjung, ketan, kettimut}@mcs.anl.gov

Abstract—Scientific workflows are increasingly gaining atten-
tion as both data and compute resources are getting bigger,
heterogeneous, and distributed. Many scientific workflows are
both compute intensive and data intensive and use distributed
resources. This situation poses significant challenges in terms of
real-time remote analysis and dissemination of massive datasets
to scientists across the community. These challenges will be
exacerbated in the exascale era.

Parallel jobs in scientific workflows are common, and such
parallelism can be exploited by scheduling parallel jobs among
multiple execution sites for enhanced performance. Previous
scheduling algorithms such as heterogeneous earliest finish time
(HEFT) did not focus on scheduling thousands of jobs often
seen in contemporary applications. Some techniques, such as
task clustering, have been proposed to reduce the overhead of
scheduling a large number of jobs. However, scheduling massively
parallel jobs in distributed environments poses new challenges as
data movement becomes a nontrivial factor.

We propose efficient parallel execution models through
pipelined execution of data transfer, incorporating network
bandwidth and reserved resources at an execution site. We
formally analyze those models and suggest the best model with
the optimal degree of parallelism. We implement our model in the
Swift parallel scripting paradigm using GridFTP. Experiments on
real distributed computing resources show that our model with
optimal degrees of parallelism outperform the current parallel
execution model by as much as 50% reduction of total execution
time.

I. INTRODUCTION

Scientific workflows have gained prominence as tools of
choice for running multistaged computations on large, hetero-
geneous, and distributed resources. Many scientific workflows
[1], [2] are both compute intensive and data intensive and
use distributed resources. This situation poses significant chal-
lenges in terms of real-time remote analysis and dissemination
of massive datasets to scientists across the community. These
challenges will be exacerbated in the exascale era.

Parallelism is a common occurence in various scientific
workflow patterns [3]. This parallelism can be classified into
two broad classes:

1) Workflow parallelism, which occurs because of the
presence of independent branches in a workflow.

2) Data parallelism, which occurs because of a need to
execute a workflow repeatedly for multiple datasets.

Such parallelism can be exploited by distributing parallel
jobs among multiple execution sites for enhanced perfor-

mance. Previous scheduling algorithms such as heterogeneous
earliest finish time (HEFT) [4] did not focus on scheduling par-
allel jobs that can amount to a few thousand. Some techniques,
such as task clustering [5], have been proposed to reduce the
overhead of scheduling a large number of jobs.

Despite these opportunities of parallelism, scheduling mas-
sively parallel jobs in distributed environments poses new
challenges as data movement becomes a nontrivial factor.
Distributing parallel jobs among execution sites depending
on their computing capacities is not enough for efficient job
execution. A job can be naturally divided into three steps:
stage-in, execution, and stage-out. Stage-in and stage-out steps
refers to the input and output of data at an execution site. This
involves using data transfer mechanisms such as sockets over
TCP, specialized tool like GridFTP [6], etc. A simple policy of
blocking job execution until data for all jobs in an execution
step are available can lead to performance degradation.

In this paper, we propose efficient parallel execution models
through pipelined execution of data transfer via dedicated
channels overlapped with execution, incorporating better uti-
lization of network bandwidths and reserved resources at an
execution site. We formally analyze these models and suggest
the best model with an improved exploitation of parallelism.
Consequently, the paper makes the following contributions:

1) Review and theoretical analysis of various pipelined
execution models for wide-area distributed computing.
They were originally designed for tightly coupled archi-
tectures such as vector and superscalar machines.

2) Decompose traditional staging and execution cycles of
application tasks into distinct jobs to exploit parallelism
by overlapping those cycles in a pipeline.

3) Implement and test the above method via Swift par-
allel scritping framework [7] on wide-area distributed
resources enabled with a third-party GridFTP data trans-
fers.

The remainder of the paper is structured as follows. In Sec-
tion II, we briefly present background on distributed parallel
computing. In Section III, we propose several parallel job
execution models and present mathematical analysis of those
models and corresponding optimal degrees of parallelism. In
Section IV, we evaluate our analytical models with actual
implementation in the Swift parallel scripting paradigm with

third-party GridFTP transfers for data staging. In Section V,
we briefly summarize our work.

II. BACKGROUND

In this section, we briefly present parallelizing techniques
in the literature.

A. Parallel Computing in Local Machines

Parallel computing on single, large machines has been an
active research area since the 1990s [8]. computer architectures
can be categorized into four areas: (1) temporal parallelism:
pipelining, (2) data parallelism: SIMD, (3) functional paral-
lelism: MIMD, and (4) instruction level parallelism: super-
scalar, VLIW. In case of applications, several parallel program-
ming models, such as the message-passing model implemented
and popularized by MPI and OpenMP standards, have become
standard [9].

In order to apply these techniques for distributed applica-
tions, additional constraints such as wide-area network com-
munications among distributed processes should be consid-
ered.

B. Distributed Parallel Computing

Distributed computing platforms are deployed to run and
manage scientific workflows efficiently. Popular workflow
management systems include Condor DAGMan [10], Pegasus
[11], Taverna [12], and makeflow [13]. Regarding massively
parallel job scheduling, Pegasus [11] provides a task clustering
technique that groups parallel jobs based on fixed parameters
such as number of groups. This static approach has limitations
such as ignorance of job properties (e.g., compute-/data-
intensive job). Some approaches have attempted to address
the limitations through dynamic task clustering. One exam-
ple is the Falkon project [14], which dynamically generates
workflows and clusters tasks for compute resource sites.

As connection-oriented networks such as ESnet [15] and
Internet2 [16] started to provide in-advance network path
reservation through OSCARS [17] and as the amount of data is
expected to grow rapidly in the near future, data movement and
placement become important factors in workflow scheduling
algorithms. Accordingly, recent workflow scheduling algo-
rithms focus not only on optimal compute resource allocations
but also on efficient data movement [18].

To the best of our knowledge, however, distributed parallel
job scheduling has not been tackled in terms of optimization
of data transfer. Especially when multiple parallel jobs, each
of which needs to receive/send data to/from remote sites, are
mapped to a single site, overlapping and pipelined data transfer
can significantly improve overall performance. In the follow-
ing sections, we propose and analyze parallel execution models
enabling data transfer to be overlapped with computation.

III. DISTRIBUTED MASSIVELY PARALLEL JOB
SCHEDULING

In this section, we first describe challenges in distributed
massively parallel job scheduling. We then formally ana-

lyze the parallel execution models and propose optimal co-
scheduling algorithms, taking into account both compute and
network resources.

A. Problem Statement

Scheduling massively parallel jobs in wide-area, federated
distributed high-performance computing (HPC) systems such
as XSEDE [19] is not trivial for several reasons. First, dis-
tributed HPC systems have diverse capability, and users have
different resource allocations on the systems depending on
subscribed projects. Moreover, each HPC system is managed
by different local resource managers, such as MAUI [20]
and SLURM [21], which makes job scheduled on the system
go through different internal scheduling policies. With data-
intensive workflows, the time required for data movement for
jobs becomes more important compared with the CPU time
required for running the jobs. Data movement could involve
network topologies in a single or multiple domains, and
concurrent data movements should be carefully coordinated
because network bottlenecks are largely influenced by net-
work topologies. The network resource scheduling efforts may
be quite different depending on network properties, packet-
oriented vs. circuit-oriented networks.

In the following sections, we first formalize the scheduling
problem for a single HPC site where a user has a limited
amount of allocation and multiple parallel jobs are given. We
show that the solution to the problem is the optimal degree of
parallelism, which means how many jobs should be executed
in parallel considering compute and network resources. In
future, we will extend the scheduling solution to a workflow
consisting of many jobs targetted to multiple compute resource
sites.

B. Theoretical Analysis of Execution Time

In this section, we theoretically analyze the performance of
distributed parallel tasks. We start by describing basic well-
known performance equations at the computer instruction level
[8]. We then develop analytical performance equations for
distributed parallel tasks.

In Equation 1, Tinst(m, p) is the number of base cycles to
complete tasks in the instruction level when all instructions
take one base cycle, k is the length of one pipeline iteration,
m is the number of simultaneous instruction issues, p is
the degree of parallelism in each pipeline stage, and n is
the number of iterations. The parameter p means that each
instruction can be further pipelined into p subpipeline stages.
A machine is called a superscalar machine if m > 1; a
machine is called a superpipelined machine when p > 1.

Tinst(m, p) = k +
n−m

m× p
(1)

k : Lengh of one pipeline iteration in base cycles
m : Number of simultaneous instruction issues
p : Degree of parallelism in each pipeline stage
n : Number of iterations

In Equation 2, Sinst is speedup compared with sequential
execution that requires nk base cycles.

Sinst =
nk

Tinst(m, p)
(2)

At the task level, when instructions are substituted by tasks
of variable lengths and p = 1, the previous equations can
be extended as in Equation 3. If the execution times of
pipeline tasks vary, the execution time of one pipeline stage is
dominated by the maximum execution time of pipeline tasks.
Since Ttask(m, 1) becomes close to n

m × tmax as n increases,
the speedup for task-level pipelining can be expressed as in
Equation 4 if the times of SI, EX, SO are similar.

Ttask(m, 1) = (k +
n−m

m
)× tmax (3)

k : Lengh of one pipeline iteration in number of tasks
m : Number of simultaneous task issues
n : Number of pipeline iterations

tmax : Maximum execution time of pipeline tasks.

Stask =
n× ttotal
Ttask(m, 1)

' mk (4)

ttotal : Total execution time of tasks without pipelining

Based on Equations 3 and 4, we can formally analyze the
performance of jobs dispatched to one compute resource site
when data movement and computation are overlapped. For
example, if four jobs are scheduled on a cluster A consisting
of 2 nodes and each job is required to occupy the whole
node, the data for the third and fourth jobs can be transferred
while the first and second jobs are running. This approach is
implementable by using GridFTP and associated data transfer
nodes dedicated for data transfers. The dedicated data transfer
node model is used by many compute facilities including the
national cyberinfrastructure such as XSEDE and this is also the
basic model of Science DMZ [22]. We categorize overlapping
of data movement and computation into three classes: simple
pipelined execution, multiple control-flow based execution,
and superscalar-style execution. In the following, we describe
each class in more details.

1) Simple pipelined execution (SPE): Without loss of gen-
erality, we can assume that a job is composed of three tasks
or stages, stage-in (SI), execution (EX), and stage-out (SO).
In the SI stage, the input data for the job is transferred from
the precedent job sites. In the EX stage, the job runs with the
input data and produces output data for descendent jobs. In
the SO stage, the output data are transferred to the descendent
job sites or to the submit site if this is the last job in the
workflow. The simple pipelined execution is the simplest of
parallel execution cases, in which the SI, EX, and SO stages
are executed in a pipeline as in Figure 1. The execution
time(SPE) and speedup(SPE) for this model are analyzed in
Equations 5 and 6, respectively.

0 1 2 3 4

SI EX SO

time

SI EX SO

SI EX SO

SI EX SO

5

Fig. 1. Simple pipelined execution.

TSPE(1, 1) = (k + (n− 1))× tmax (5)

SSPE =
n× ttotal
TSPE(1, 1)

' k (6)

One implementation of this model is that, in the EX stage,
the job calls a nonblocking data receive function for input data
required by the next job and a nonblocking data send function
for output data produced by itself at the start and end of the
EX stage, respectively.

2) Multiple control-flow-based execution (MCE): Multiple
control-flow-based execution (MCE) is a model of a fixed
number of independent control flows/threads executing SI,
EX, and SO repeatedly. For instance, Figure 2 shows that
four threads are pooled for multiple job execution, and their
progress is synchronized at best. They may not be synchro-
nized, however, depending on the operating system’s schedul-
ing policy. The typical example of this model is the Swift
parallel scripting paradigm. The job throttle parameter in Swift
takes control of the number of concurrent job executions. In
the best case, the execution time(MCE) and speedup(MCE) for
this model are analyzed in Equations 7 and 8, respectively.

0 1 2 3 4

SI EX SO

time

SI EX SO

SI EX SO

SI EX SO

5

SI EX SO

SI EX SO

SI EX SO

SI EX SO

Fig. 2. Multiple control-flow based execution.

TMCE = (k · d n
m
e)× tmax (7)

SMCE =
n× ttotal
TMCE

' m (8)

Then how do we determine optimal m for the system? There
should be enough compute resources to run m EX stages. If
not, the time required for m EX stages may be more than
tmax, which leads to prolonged TMCE . For instance, if two
CPU cores are available and three jobs are in the EX stage,
two jobs will first run simultaneously and the third job will
wait until those jobs are completed. Consequently, the total
required time would be two times of the one job execution
time.

3) Superscalar-style execution (SSE): The superscalar-type
execution (SSE) model is a hybrid of the SPE model and
the MCE model, in which m jobs are in the same stage and
each stage is overlapped with other stages. Figure 3 shows
an example of SSE, and equations 9 and 10 are the required
time(SSE) and speedup(SSE), respectively, for the SSE model.
In this model, m is determined in the same way as in MCE
model.

0 1 2 3 4

SI EX SO

time

SI EX SO

SI EX SO

5

SI EX SO

SI EX SO

SI EX SO

SI EX SO

SI EX SO

SI EX SO

Fig. 3. Superscalar-style execution.

TSSE(m, 1) = (k +
n−m

m
)× tmax (9)

SSSE =
n× ttotal
T (m, 1)

' m× ttotal
tmax

' mk (10)

C. Coscheduling with networks

When one compute resource has r computing nodes and
unlimited I/O capacity is assumed, the model for the best
performance is a SSE model with m = r whose speedup are 3r
and 3 compared with the sequential execution model and the
MCE model, respectively. However, the network bandwidth is
not unlimited, and the times for the SI and SO stages vary
according to the network status and m. Therefore, we define
the time required for pipeline stages as functions of m, where
m = 0 means a sequential execution. Table I shows a list of
time functions for pipeline execution.

With the newly defined functions, Equation 10 can be
rewritten as Equation 11.

SSSE ' m× ttotal(0)

tmax(m)

= m× tSI(0) + tEX(0) + tSO(0)

max{tSI(m), tEX(m), tSO(m)}
(11)

TABLE I
TIME FUNCTION LIST

Function Description

tSI(m) Time required for the SI stage
tEX(m) Time required for the EX stage
tSO(m) Time required for the SO stage
ttotal(m) Time required for all sequential pipeline stages;

tSI(m) + tEX(m) + tSO(m)
tmax(m) Maximum of tSI(m), tEX(m), and tSO(m)

For simplicity, we assume that the network bandwidth,
Bshared, is shared by both the SI and SO stages and that the
EX stage is not interfered with the SI/SO stages. In reality, the
problem may get more complicated when a complex network
topology is involved and network paths used for SI and SO
may or may not overlap at our discretion.

m

(a)

t
SI/SO

0 1

tSI/SO(1)

D
SI
+D

SO

B
shared

m

(b)

t
EX

0 1

tEX(1)

t
EX
(1)

n

n

2tEX(1)

Fig. 4. (a) tSI/SO(m) plot, (b) tEX(m) plot

With Equation 11, our goal is to find the optimal m that
maximizes the speedup SSSE . Since the SI and SO stages are
overlapped and the Bshared bandwidth is also shared by both
data transfers, Equation 12 holds true.

tSI(m) = tSO(m) = m× (DSI +DSO)

Bshared
(12)

DSI : Amount of data transferred in SI stages
DSO : Amount of data transferred in SO stages

Therefore, we can substitute max{tSI(m), tEX(m), tSO(m)}
by max{m× (DSI+DSO)

Bshared
, tEX(m)}. The resulting equation is

Equation 13.

SSSE = m× ttotal(0)

max{m× (DSI+DSO)
Bshared

, tEX(m)}
(13)

Equation 13 can be further analyzed through the denomi-
nator max function. Figure 4 shows the plots of two terms,
m × (DSI+DSO)

Bshared
(= tSI/SO(m)) and tEX(m), in the max

function.
Figure 5 shows the possible four cases of the max func-

tion depending on the relative positions of two functions,
tSI/SO(m) and tEX(m). We can find optimal m as follows.

a) Data-intensive case (DSI+DSO

Bshared
> tEX(1)

r) ∧
(tSI/SO(1) > tEX(1)) ≡ (DSI+DSO

Bshared
> tEX(1)): The

speedup of this case is constant regardless of m; we can pick

m

(a) Data-intensive case

0 1

tSI/SO(1)

D
SI
+D

SO

B
shared

m

(b) Compute and data-intensive case

0 1

tEX(1)

t
EX
(1)

r

r

2tEX(1)

tSI/SO(1)

D
SI
+D

SO

B
shared

tEX(1)

t
EX
(1)

r

2tEX(1)

r

m

(c) Impossible case
0 1

tSI/SO(1)

D
SI
+D

SO

B
shared

m

(d) Compute-intensive case
0 1

tEX(1)

t
EX
(1)

r

r

2tEX(1)

tSI/SO(1)

D
SI
+D

SO

B
shared

tEX(1)

t
EX
(1)

r

2tEX(1)

r

Fig. 5. (a) Data-intensive case (b) Compute and data-intensive case (c) Impossible case (d) Compute-intensive case.

m = 1, which requires the simplest implementation.

max{·} = m× DSI +DSO

Bshared
,m > 0

SSSE =
ttotal(0)×Bshared

DSI +DSO

Optimal m = 1 (14)

b) Compute and data-intensive case (DSI+DSO

Bshared
>

tEX(1)
r) ∧ (tSI/SO(1) < tEX(1)) ≡ (tEX(1)

r < DSI+DSO

Bshared
<

tEX(1)): This case is further divided into two subcases: prior
and posterior to the intersection of tSI/SO(m) and tEX(m).
Optimal m´ s of both cases are same.

max{·} =

{
tEX(1), if 1 < m ≤ tEX(1)×Bshared

DSI+DSO
DSI+DSO

Bshared
×m, if tEX(1)×Bshared

DSI+DSO
≤ m < r

SSSE =

{
m×ttotal(0)

tEX(1) , if 1 < m ≤ tEX(1)×Bshared

DSI+DSO
Bshared×ttotal(0)

DSI+DSO
, if tEX(1)×Bshared

DSI+DSO
≤ m < r

Optimal m =
tEX(1)×Bshared

DSI +DSO
(15)

c) Impossible case (DSI+DSO

Bshared
< tEX(1)

r) ∧
(tSI/SO(1) > tEX(1)) ≡ (tEX(1) < DSI+DSO

Bshared
< tEX(1)

r):
This is an impossible case.

d) Compute-intensive case (DSI+DSO

Bshared
< tEX(1)

r) ∧
(tSI/SO(1) < tEX(1)) ≡ (DSI+DSO

Bshared
< tEX(1)

r): The
speedup of this case increases as m grows. However, m is
limited by dn/3e, which guarantees pipelined execution at
least.

SI
EX

SO

SI

EX

SO

SI

EX

SO

SI

EX

SO

Fig. 6. A data-flow view of the pipeline; the jobs are shown in boxes and
data dependencies as arrows, the jobs in non-connected boxes are independent
and can be executed in parallel.

max{·} ' (m+ n− 1)tEX(1)

r
,m > 0

SSSE =
mn× ttotal(0)

(m+ n− 1)tEX(1)

Optimal m = dn/3e, where n is the number of jobs. (16)

IV. EXPERIMENTAL EVALUATIONS

An alternative, data-flow view of the pipeline shown in
figure 1 can be as shown in figure 6. Jobs are shown as
boxes and arrows between boxes show a data dependency
between these jobs. Each triplet of SI-EX-SO forms one
logical task. This view of decomposed tasks into three jobs
gives a maximum oppurtunity for parallel and overlapped
execution assuming each task in this pipeline are independent,
either by the virtue of data parallelism or workflow parallelism
discussed in Section I.

The data-flow view depicted in Figure 6 above is imple-
mented by coding it using the Swift parallel scripting frame-

Trestles

Stampede

login

Stampede

compute node

Third-party GridFTP

Data Source Data Dest

Submit Host

Fig. 7. Experimental setup on XSEDE resources; Data is hosted at SDSC
Trestles and consumed at TACC Stampede; application is submitted via Swift
from Stampede login nodes; jobs run on Stampede compute nodes.

work. The programming model of Swift allows for implicit
parallelism governed and steered via data-flow constraints.
The underlying Karajan [23] engine and the Coasters [24]
framework of Swift provides a built-in data staging mechanism
using socket-based TCP transfers. However, in the current
implementation, we bypass the builtin staging for third-party
data transfer via GridFTP motivated by the following factors:

1) GridFTP servers used for third-party data staging are
performant and dedicated for data movement resulting in
faster data transfers compared to regular TCP channels.

2) Detaching the data staging steps from computation al-
lows for overlapped data transfer and execution which in
turn improves the overall execution time of application.

1 import "header";
2
3 int n=4; //number of tasks
4
5 #first stage
6 token[0] = stage_in (dstore[0], local[0]);
7
8 #second stage
9 res[0] = exec (local[0], token[0]);

10 token[1]=stage_in (dstore[1], local[1]);
11
12 foreach i in [2:n-1]{
13 dstore_out[i-2] = stage_out (res[i-2]);
14 res[i-1] = exec (local[i-1], token[i-1]);
15 token[i] = stage_in (dstore[i], local[i]);
16 }
17
18 #second from last stage
19 dstore_out[n-2] = stage_out (res[n-2]);
20 res[n-1] = exec (local[n-1], token[n-1]);
21
22 #last stage
23 dstore_out[n-1] = stage_out (res[n-1]);

Listing 1. Swift script of our model for parallel execution of pipelined
workflow tasks

A Swift script implementation for the pipeline is shown in
listing 1. Swift variables and function definitions are defined
in the ‘imported’ header (line 1) file. The first (lines 6,
9-10) and last two (lines 19-20, 23) stages of the pipeline
are represented by the lines before and after the foreach
loop. The foreach (lines 12-16) loop represents the jobs
for each of the task. A ‘token’ variable is used for synchro-
nization between stage_in, exec and stage_out jobs.
Array indices makes sure that the same tasks are chained by

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

10 50 100 200

m
a
k
e
s
p
a
n
 t

im
e
 i
n
 s

e
c

Data size in MB

sequential execution

MCE, m=3

SSE, m=3

Fig. 8. Performance results: A 10-task application running in pipeline with
different staging loads under different models of pipelined execution

the dependencies while still running in fully asynchronous
execution mode.

The script shown in the listing 1 was executed from the
login node of the Stampede supercomputer located at Texas.
The data was hosted on the data storage node of remotely
located SanDiego Supercomputer Center’s (SDSC) Trestles
system. A complete setup is shown in figure 7. Figure 8 shows
performance results for our approach with different degrees
of parallelism (controlled via Swift throttle parameter) and
an increasing number of data sizes. The execution time of the
jobs were adjusted in proportion to the average data movement
times from the staging jobs. The plot shows resulting execution
times averaged over 5 runs with standard deviation recorded. A
basic run with sequential pipeline execution shows a baseline
result as shown by the blue (solid) plot. As expected, the
performance is poor since each task is run in three sequential
stages. A clearly improved performance is seen when running
the jobs in parallel pipelined fashion as shown by the green
(dashed) plot corresponding to the MCE model with m = 3,
a parallelism of 3 jobs at a time. Finally, as seen by the red
(dotted) plot corresponding the SSE model with m = 3, an
improvement by 50% is observed when the parallelism is
increased to 9 mimicking a superscalar pipeline execution.
In our experiments, the results follows the models in Section
III-B where the data transfer performance is linearly scalable
as the number of data streams increases. The MCE model
with with m = 3 is about 2.4 times faster than the sequential
model, which is comparable to the ideal speedup with linearly
scalable data transfer rates is 3. We suspect that this is either
because a single data transfer is not saturating the network link
or multiple alternate network paths exist between two hosts.
In former case, we will tune data transfers to evaluate models
taking into account network contention in Section III-C. In
latter case, we will investigate more sophisticated parallel
execution models to incorporated multiple network paths.

V. CONCLUSION

We propose efficient parallel execution models through
pipelined execution of data transfer, incorporating network

bandwidth and reserved resources at an execution site. We
formally analyze those models and suggest the best model
with the optimal degree of parallelism. We also implement our
model in the Swift parallel scripting paradigm using GridFTP.
Experiments on real distributed computing resources show that
our model with optimal degrees of parallelism outperform the
current parallel execution model by as much as 50% reduction
of total execution time.

ACKNOWLEDGMENT

This work was supported by the U.S. Department of Energy,
Office of Science, Advanced Scientific Computing Research,
under Contract DE-AC02-06CH11357.

REFERENCES

[1] H. B. Newman, M. H. Ellisman, and J. A. Or-
cutt, “Data-intensive e-science frontier research,” Commun.
ACM, vol. 46, no. 11, pp. 68–77, 2003. [On-
line]. Available: http://portal.acm.org/ft gateway.cfm?id=948411&type=
html&coll=Portal&dl=ACM&CFID=46158761&CFTOKEN=74773945

[2] E. Deelman, D. Gannon, M. Shields, and I. Taylor, “Workflows and
e-science: An overview of workflow system features and capabilities,”
Future Generation Computer Systems, vol. 25, no. 5, pp. 528–540,
May 2009. [Online]. Available: http://www.sciencedirect.com/science/
article/B6V06-4SYCPKX-2/2/bb631979e3dd7071ddede90bbff65a91

[3] C. Pautasso and G. Alonso, “Parallel computing patterns for grid work-
flows,” in Workshop on Workflows in Support of Large-Scale Science,
2006. WORKS ’06, 2006, pp. 1–10.

[4] H. Topcuoglu, S. Hariri, and M.-Y. Wu, “Performance-effective and
low-complexity task scheduling for heterogeneous computing,” IEEE
Transactions on Parallel and Distributed Systems, vol. 13, pp. 260–274,
2002.

[5] G. Singh, M.-H. Su, K. Vahi, E. Deelman, B. Berriman, J. Good, D. S.
Katz, and G. Mehta, “Workflow task clustering for best effort systems
with pegasus,” in Proceedings of the 15th ACM Mardi Gras conference,
ser. MG ’08. New York: ACM, 2008, pp. 9:1–9:8. [Online]. Available:
http://doi.acm.org/10.1145/1341811.1341822

[6] B. Allcock, J. Bresnahan, R. Kettimuthu, M. Link, C. Dumitrescu,
I. Raicu, and I. Foster, “The Globus striped GridFTP framework and
server,” in SC’2005, 2005.

[7] M. Wilde, M. Hategan, J. M. Wozniak, B. Clifford, D. S. Katz, and
I. Foster, “Swift: A language for distributed parallel scripting,” Parallel
Computing, vol. 37, pp. 633–652, 2011.

[8] K. Hwang, Advanced Computer Architecture - Parallelism, Scalability,
Programmability. McGraw-Hill, 1993.

[9] J. Diaz, C. Munoz-Caro, and A. Nino, “A survey of parallel pro-
gramming models and tools in the multi and many-core era,” IEEE
Transactions on Parallel and Distributed Systems, vol. 23, no. 8, pp.
1369–1386, 2012.

[10] P. Couvares, T. Kosar, A. Roy, J. Weber, and K. Wenger,
“Workflow management in condor,” in Workflows for e-Science,
I. J. Taylor, E. Deelman, D. B. Gannon, and M. Shields, Eds.
London: Springer London, 2007, pp. 357–375. [Online]. Available:
http://www.springerlink.com/content/r6un6312103m47t5/

[11] J. Blythe, S. Jain, E. Deelman, Y. Gil, K. Vahi, A. Mandal, and
K. Kennedy, “Task scheduling strategies for workflow-based applications
in grids,” in IEEE International Symposium on Cluster Computing and
the Grid, 2005. CCGrid 2005, vol. 2, 2005, pp. 759–767 Vol. 2.

[12] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M. Greenwood,
T. Carver, K. Glover, M. R. Pocock, A. Wipat, and P. Li, “Taverna: a
tool for the composition and enactment of bioinformatics workflows,”
Bioinformatics, vol. 20, no. 17, pp. 3045–3054, Nov. 2004. [Online].
Available: http://dx.doi.org/10.1093/bioinformatics/bth361

[13] M. Albrecht, P. Donnelly, P. Bui, and D. Thain, “Makeflow: a
portable abstraction for data intensive computing on clusters, clouds,
and grids,” in Proceedings of the 1st ACM SIGMOD Workshop on
Scalable Workflow Execution Engines and Technologies, ser. SWEET
’12. New York, NY, USA: ACM, 2012, p. 1:13. [Online]. Available:
http://doi.acm.org/10.1145/2443416.2443417

[14] I. Raicu, Y. Zhao, C. Dumitrescu, I. Foster, and M. Wilde, “Falkon: a
fast and light-weight tasK executiON framework,” in Proceedings of the
2007 ACM/IEEE Conference on Supercomputing, 2007. SC ’07, 2007,
pp. 1–12.

[15] “ESnet,” http://www.es.net/.
[16] “Internet2,” http://www.internet2.edu/.
[17] C. Guok, D. Robertson, M. Thompson, J. Lee, B. Tierney, and W. John-

ston, “Intra and interdomain circuit provisioning using the OSCARS
reservation system,” in 3rd International Conference on Broadband
Communications, Networks, and Systems, 2006.

[18] E.-S. Jung, S. Ranka, and S. Sahni, “Workflow scheduling in e-science
networks,” in Computers and Communications (ISCC), 2011 IEEE
Symposium on, 2011, pp. 432–437.

[19] “Extreme science and engineering discovery environment (xsede),”
http://www.xsede.org/.

[20] D. B. Jackson, Q. Snell, and M. J. Clement, “Core algorithms of
the maui scheduler,” in Revised Papers from the 7th International
Workshop on Job Scheduling Strategies for Parallel Processing, ser.
JSSPP ’01. London: Springer-Verlag, 2001, p. 87?102. [Online].
Available: http://dl.acm.org/citation.cfm?id=646382.689682

[21] A. B. Yoo, M. A. Jette, and M. Grondona, “SLURM: Simple Linux
Utility for Resource Management,” in Job Scheduling Strategies for Par-
allel Processing, ser. Lecture Notes in Computer Science, D. Feitelson,
L. Rudolph, and U. Schwiegelshohn, Eds. Springer Berlin Heidelberg,
Jan. 2003, no. 2862, pp. 44–60.

[22] “Science DMZ,” http://fasterdata.es.net/science-dmz/.
[23] Y. Zhao, I. Raicu, I. T. Foster, M. Hategan, V. Nefedova, and M. Wilde,

“Realizing fast, scalable and reliable scientific computations in grid
environments,” CoRR, vol. abs/0808.3548, 2008.

[24] M. Hategan, J. Wozniak, and K. Maheshwari, “Coasters: uniform
resource provisioning and access for scientific computing on clouds and
grids,” in Proc. Utility and Cloud Computing, 2011.

